Applications in Galois Theory
Separable polynomials occur frequently in Galois theory.
For example, let P be an irreducible polynomial with integer coefficients and p be a prime number which does not divides the leading coefficient of P. Let Q be the polynomial over the finite field with p elements, which is obtained by reducing modulo p the coefficients of P. Then, if Q is separable (which is the case for every p but a finite number) then the degrees of the irreducible factors of Q are the lengths of the cycles of some permutation of the Galois group of P.
Another example: P being as above, a resolvent R for a group G is a polynomial whose coefficients are polynomials in the coefficients of p, which provides some information on the Galois group of P. More precisely, if R is separable and has a rational root then the Galois group of P is contained in G. For example, if D is the discriminant of P then is a resolvent for the alternating group. This resolvent is always separable if P is irreducible, but most resolvents are not always separable.
Read more about this topic: Separable Polynomial
Famous quotes containing the word theory:
“We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fallwhich latter, it would seem, is now near, among all people.”
—Thomas Carlyle (17951881)