Semantic Analysis (machine Learning)

In machine learning, semantic analysis of a corpus is the task of building structures that approximate concepts from a large set of documents. It generally does not involve prior semantic understanding of the documents.

Latent semantic analysis (sometimes latent semantic indexing), is a class of techniques where documents are represented as vectors in term space. A prominent example is PLSI.

Latent Dirichlet allocation involves attributing document terms to topics.

n-grams and hidden Markov models work by representing the term stream as a markov chain where each term is derived from the few terms before it.


Famous quotes containing the words semantic and/or analysis:

    Watt’s need of semantic succour was at times so great that he would set to trying names on things, and on himself, almost as a woman hats.
    Samuel Beckett (1906–1989)

    The spider-mind acquires a faculty of memory, and, with it, a singular skill of analysis and synthesis, taking apart and putting together in different relations the meshes of its trap. Man had in the beginning no power of analysis or synthesis approaching that of the spider, or even of the honey-bee; but he had acute sensibility to the higher forces.
    Henry Brooks Adams (1838–1918)