Self-focusing - Plasma Self-focusing

Plasma Self-focusing

Advances in laser technology have recently enabled the observation of self-focusing in the interaction of intense laser pulses with plasmas. Self-focusing in plasma can occur through thermal, relativistic and ponderomotive effects. Thermal self-focusing is due to collisional heating of a plasma exposed to electromagnetic radiation: the rise in temperature induces a hydrodynamic expansion which leads to an increase of the index of refraction and further heating. Relativistic self-focusing is caused by the mass increase of electrons travelling at speed approaching the speed of light, which modifies the plasma refractive index nrel according to the equation

,

where ω is the radiation angular frequency and ωp the relativistically corrected plasma frequency . Ponderomotive self-focusing is caused by the ponderomotive force, which pushes electrons away from the region where the laser beam is more intense, therefore increasing the refractive index and inducing a focusing effect.

The evaluation of the contribution and interplay of these processes is a complex task, but a reference threshold for plasma self-focusing is the relativistic critical power

,

where me is the electron mass, c the speed of light, ω the radiation angular frequency, e the electron charge and ωp the plasma frequency. For an electron density of 1019 cm-3 and radiation at the wavelength of 800 nm, the critical power is about 3 TW. Such values are realisable with modern lasers, which can exceed PW powers. For example, a laser delivering 50 fs pulses with an energy of 1 J has a peak power of 20 TW.

Self-focusing in a plasma can balance the natural diffraction and channel a laser beam. Such effect is beneficial for many applications, since it helps increasing the length of the interaction between laser and medium. This is crucial, for example, in laser-driven particle acceleration, laser-fusion schemes and high harmonic generation.

Read more about this topic:  Self-focusing