Selective Catalytic Reduction - Chemistry

Chemistry

The NOx reduction reaction takes place as the gases pass through the catalyst chamber. Before entering the catalyst chamber the ammonia, or other reductant (such as urea), is injected and mixed with the gases. The chemical equation for a stoichiometric reaction using either anhydrous or aqueous ammonia for a selective catalytic reduction process is:

4NO + 4NH3 + O2 → 4N2 + 6H2O + CO2
2NO2 + 4NH3 + O2 → 3N2 + 6H2O
NO + NO2 + 2NH3 → 2N2 + 3H2O

With several secondary reactions:

2SO2 + O2 → 2SO3
2NH3 + SO3 + H2O → (NH4)2SO4
NH3 + SO3 + H2O → NH4HSO4

The reaction for urea instead of either anhydrous or aqueous ammonia is:

4NO + 2(NH2)2CO + O2 → 4N2 + 4H2O + 2CO2

The ideal reaction has an optimal temperature range between 630 and 720 K, but can operate from 500 to 720 K with longer residence times. The minimum effective temperature depends on the various fuels, gas constituents, and catalyst geometry. Other possible reductants include cyanuric acid and ammonium sulfate.

Read more about this topic:  Selective Catalytic Reduction

Famous quotes containing the word chemistry:

    The chemistry of dissatisfaction is as the chemistry of some marvelously potent tar. In it are the building stones of explosives, stimulants, poisons, opiates, perfumes and stenches.
    Eric Hoffer (1902–1983)

    If thought makes free, so does the moral sentiment. The mixtures of spiritual chemistry refuse to be analyzed.
    Ralph Waldo Emerson (1803–1882)

    Science with its retorts would have put me to sleep; it was the opportunity to be ignorant that I improved. It suggested to me that there was something to be seen if one had eyes. It made a believer of me more than before. I believed that the woods were not tenantless, but choke-full of honest spirits as good as myself any day,—not an empty chamber, in which chemistry was left to work alone, but an inhabited house,—and for a few moments I enjoyed fellowship with them.
    Henry David Thoreau (1817–1862)