Structure Description
This section describes the structure of a segment tree in a one-dimensional space.
Let S be a set of intervals, or segments. Let p1, p2, ..., pm be the list of distinct interval endpoints, sorted from left to right. Consider the partitioning of the real line induced by those points. The regions of this partitioning are called elementary intervals. Thus, the elementary intervals are, from left to right:
That is, the list of elementary intervals consists of open intervals between two consecutive endpoints pi and pi+1, alternated with closed intervals consisting of a single endpoint. Single points are treated themselves as intervals because the answer to a query is not necessarily the same at the interior of an elementary interval and its endpoints.
Given a set I of intervals, or segments, a segment tree T for I is structured as follows:
- T is a binary tree.
- Its leaves correspond to the elementary intervals induced by the endpoints in I, in an ordered way: the leftmost leaf corresponds to the leftmost interval, and so on. The elementary interval corresponding to a leaf v is denoted Int(v).
- The internal nodes of T correspond to intervals that are the union of elementary intervals: the interval Int(N) corresponding to node N is the union of the intervals corresponding to the leaves of the tree rooted at N. That implies that Int(N) is the union of the intervals of its two children.
- Each node or leaf v in T stores the interval Int(v) and a set of intervals, in some data structure. This canonical subset of node v contains the intervals from I such that contains Int(v) and does not contain Int(parent(v)). That is, each segment in I stores the segments that span through its interval, but do not span through the interval of its parent.
Read more about this topic: Segment Tree
Famous quotes containing the words structure and/or description:
“A committee is organic rather than mechanical in its nature: it is not a structure but a plant. It takes root and grows, it flowers, wilts, and dies, scattering the seed from which other committees will bloom in their turn.”
—C. Northcote Parkinson (19091993)
“The Sage of Toronto ... spent several decades marveling at the numerous freedoms created by a global village instantly and effortlessly accessible to all. Villages, unlike towns, have always been ruled by conformism, isolation, petty surveillance, boredom and repetitive malicious gossip about the same families. Which is a precise enough description of the global spectacles present vulgarity.”
—Guy Debord (b. 1931)