Parallel Axis Theorem
It is often easier to derive the second moment of area with respect to its centroidal axis, . However, it may be necessary to calculate the second moment of area with respect to a different, parallel axis, say the axis. The parallel axis theorem states
where
- = Area of the shape
- = Perpendicular distance between the and axes
A similar statement can be made about the axis and the parallel centroidal axis. Or, in general, any centroidal axis and a parallel axis.
Read more about this topic: Second Moment Of Area
Famous quotes containing the words parallel, axis and/or theorem:
“As I look at the human story I see two stories. They run parallel and never meet. One is of people who live, as they can or must, the events that arrive; the other is of people who live, as they intend, the events they create.”
—Margaret Anderson (18861973)
“A book is not an autonomous entity: it is a relation, an axis of innumerable relations. One literature differs from another, be it earlier or later, not because of the texts but because of the way they are read: if I could read any page from the present timethis one, for instanceas it will be read in the year 2000, I would know what the literature of the year 2000 would be like.”
—Jorge Luis Borges (18991986)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)