Scientific Modeling - Overview

Overview

A scientific model seeks to represent empirical objects, phenomena, and physical processes in a logical and objective way. All models are in simulacra, that is, simplified reflections of reality, but, despite their inherent falsity, they are nevertheless extremely useful. Building and disputing models is fundamental to the scientific enterprise. Complete and true representation may be impossible (see non-representational theory), but scientific debate often concerns which is the better model for a given task, e.g., which is the more accurate climate model for seasonal forecasting.

Attempts to formalize the principles of the empirical sciences use an interpretation to model reality, in the same way logicians axiomatize the principles of logic. The aim of these attempts is to construct a formal system that will not produce theoretical consequences that are contrary to what is found in reality. Predictions or other statements drawn from such a formal system mirror or map the real world only insofar as these scientific models are true.

For the scientist, a model is also a way in which the human thought processes can be amplified. For instance, models that are rendered in software allow scientists to leverage computational power to simulate, visualize, manipulate and gain intuition about the entity, phenomenon, or process being represented. Such computer models are in silico. Other types of scientific model are in vivo (living models, such as laboratory rats) and in vitro (in glassware, such as tissue culture).

Read more about this topic:  Scientific Modeling