Alternative (isotropic) Formulations of The Schwarzschild Metric
The original form of the Schwarzschild metric involves anisotropic coordinates, in terms of which the velocity of light is not the same for the radial and transverse directions (pointed out by A S Eddington). Eddington gave alternative formulations of the Schwarzschild metric in terms of isotropic coordinates (provided r ≥ 2GM/c2 ).
In isotropic spherical coordinates, one uses a different radial coordinate, r1, instead of r. They are related by
Using r1, the metric is
For isotropic rectangular coordinates x, y, z, where
and
the metric then becomes
In terms of these coordinates, the velocity of light at any point is the same in all directions, but it varies with radial distance r1 (from the point mass at the origin of coordinates), where it has the value
Read more about this topic: Schwarzschild Metric
Famous quotes containing the word alternative:
“Education must, then, be not only a transmission of culture but also a provider of alternative views of the world and a strengthener of the will to explore them.”
—Jerome S. Bruner (20th century)