Orbits of Test Particles
Dividing both sides by dτ2, the Schwarzschild metric can be rewritten as
The orbit of a particle in this metric is defined by the geodesic equation, which may be solved by any of several methods (as outlined below). This equation yields three constants of motion. First, the motion of the particle is always in a plane, which is equivalent to fixing θ = π/2. The second and third constants of motion, derived below, are taken as two length-scales, a and b, defined by the equations
where c represents the speed of light. Incorporating these constants of motion into the metric yields the fundamental equation for the particle's orbit
Read more about this topic: Schwarzschild Geodesics
Famous quotes containing the words orbits of, orbits, test and/or particles:
“To me, however, the question of the times resolved itself into a practical question of the conduct of life. How shall I live? We are incompetent to solve the times. Our geometry cannot span the huge orbits of the prevailing ideas, behold their return, and reconcile their opposition. We can only obey our own polarity.”
—Ralph Waldo Emerson (18031882)
“To me, however, the question of the times resolved itself into a practical question of the conduct of life. How shall I live? We are incompetent to solve the times. Our geometry cannot span the huge orbits of the prevailing ideas, behold their return, and reconcile their opposition. We can only obey our own polarity.”
—Ralph Waldo Emerson (18031882)
“This, then, is the test we must set for ourselves; not to march alone but to march in such a way that others will wish to join us.”
—Hubert H. Humphrey (19111978)
“O my countrymen!be nice;Mbe cautious of your language;and never, O! never let it be forgotten upon what small particles your eloquence and your fame depend.”
—Laurence Sterne (17131768)