Schwarzschild Geodesics - Exact Solution Using Elliptic Functions

Exact Solution Using Elliptic Functions

The fundamental equation of the orbit is easier to solve if it is expressed in terms of the inverse radius u = 1/r


\left( \frac{du}{d\varphi} \right)^{2} = \frac{1}{b^{2}} - \left( 1 - u r_{s} \right) \left( \frac{1}{a^{2}} + u^{2} \right)

The right-hand side of this equation is a cubic polynomial, which has three roots, denoted here as u1, u2, and u3


\left( \frac{du}{d\varphi} \right)^{2} = r_{s} \left( u - u_{1} \right) \left( u - u_{2} \right) \left( u - u_{3} \right)

The sum of the three roots equals the coefficient of the u2 term


u_{1} + u_{2} + u_{3} = \frac{1}{r_{s}}

A cubic polynomial with real coefficients can either have three real roots, or one real root and two complex conjugate roots. If all three roots are real numbers, the roots are labeled so that u1 < u2 < u3. If instead there is only one real root, then that is denoted as u3; the complex conjugate roots are labeled u1 and u2. Using Descartes' rule of signs, there can be at most one negative root; u1 is negative if and only if b < a. As discussed below, the roots are useful in determining the types of possible orbits.

Given this labeling of the roots, the solution of the fundamental orbital equation is


u = u_{1} + \left( u_{2} - u_{1} \right) \, \mathrm{sn}^{2}\left( \frac{1}{2} \varphi \sqrt{r_{s} \left( u_{3} - u_{1} \right)} + \delta \right)

where sn represents the sinus amplitudinus function (one of the Jacobi elliptic functions) and δ is a constant of integration reflecting the initial position. The elliptic modulus k of this elliptic function is given by the formula


k = \sqrt{\frac{u_{2} - u_{1}}{u_{3} - u_{1}}}

Read more about this topic:  Schwarzschild Geodesics

Famous quotes containing the words exact, solution and/or functions:

    Bid her paint till day of doom,
    To this favour she must come.
    Bid the merchant gather wealth,
    The usurer exact by stealth,
    The proud man beat it from his thought,
    Yet to this shape all must be brought.
    Francis Beaumont (1584-1616)

    Who shall forbid a wise skepticism, seeing that there is no practical question on which any thing more than an approximate solution can be had? Is not marriage an open question, when it is alleged, from the beginning of the world, that such as are in the institution wish to get out, and such as are out wish to get in?
    Ralph Waldo Emerson (1803–1882)

    One of the most highly valued functions of used parents these days is to be the villains of their children’s lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents’ failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.
    Frank Pittman (20th century)