Schur's Lemma - Formulation in The Language of Modules

Formulation in The Language of Modules

If M and N are two simple modules over a ring R, then any homomorphism f: MN of R-modules is either invertible or zero. In particular, the endomorphism ring of a simple module is a division ring.

The condition that f is a module homomorphism means that

The group version is a special case of the module version, since any representation of a group G can equivalently be viewed as a module over the group ring of G.

Schur's lemma is frequently applied in the following particular case. Suppose that R is an algebra over the field C of complex numbers and M = N is a finite-dimensional simple module over R. Then Schur's lemma says that the endomorphism ring of the module M is a division ring; this division ring contains C in its center, is finite-dimensional over C and is therefore equal to C. Thus the endomorphism ring of the module M is "as small as possible". More generally, this result holds for algebras over any algebraically closed field and for simple modules that are at most countably-dimensional. When the field is not algebraically closed, the case where the endomorphism ring is as small as possible is of particular interest: A simple module over k-algebra is said to be absolutely simple if its endomorphism ring is isomorphic to k. This is in general stronger than being irreducible over the field k, and implies the module is irreducible even over the algebraic closure of k.

Read more about this topic:  Schur's Lemma

Famous quotes containing the words formulation and/or language:

    You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.
    Gerard Manley Hopkins (1844–1889)

    This is an approach to that universal language which men have sought in vain.
    Henry David Thoreau (1817–1862)