Scalar Field Theory - Quantum Scalar Field Theory

Quantum Scalar Field Theory

In quantum field theory, the fields, and all observables constructed from them, are replaced by quantum operators on a Hilbert space. This Hilbert space is built on a vacuum state, and dynamics are governed by a Hamiltonian, a positive operator which annihilates the vacuum. A construction of a quantum scalar field theory may be found in the canonical quantization article, which uses canonical commutation relations among the fields as a basis for the construction. In brief, the basic variables are the field φ and its canonical momentum π. Both fields are Hermitian. At spatial points at equal times, the canonical commutation relations are given by

and the free Hamiltonian is

A spatial Fourier transform leads to momentum space fields

which are used to define annihilation and creation operators

where . These operators satisfy the commutation relations

The state |0> annihilated by all of the operators a is identified as the bare vacuum, and a particle with momentum is created by applying to the vacuum. Applying all possible combinations of creation operators to the vacuum constructs the Hilbert space. This construction is called Fock space. The vacuum is annihilated by the Hamiltonian

where the zero-point energy has been removed by Wick ordering. (See canonical quantization.)

Interactions can be included by adding an interaction Hamiltonian. For a φ4 theory, this corresponds to adding a Wick ordered term g:φ4:/4! to the Hamiltonian, and integrating over x. Scattering amplitudes may be calculated from this Hamiltonian in the interaction picture. These are constructed in perturbation theory by means of the Dyson series, which gives the time-ordered products, or n-particle Green's functions as described in the Dyson series article. The Green's functions may also be obtained from a generating function that is constructed as a solution to the Schwinger-Dyson equation.

Read more about this topic:  Scalar Field Theory

Famous quotes containing the words quantum, field and/or theory:

    A personality is an indefinite quantum of traits which is subject to constant flux, change, and growth from the birth of the individual in the world to his death. A character, on the other hand, is a fixed and definite quantum of traits which, though it may be interpreted with slight differences from age to age and actor to actor, is nevertheless in its essentials forever fixed.
    Hubert C. Heffner (1901–1985)

    ... there are no chains so galling as the chains of ignorance—no fetters so binding as those that bind the soul, and exclude it from the vast field of useful and scientific knowledge. O, had I received the advantages of early education, my ideas would, ere now, have expanded far and wide; but, alas! I possess nothing but moral capability—no teachings but the teachings of the Holy Spirit.
    Maria Stewart (1803–1879)

    The struggle for existence holds as much in the intellectual as in the physical world. A theory is a species of thinking, and its right to exist is coextensive with its power of resisting extinction by its rivals.
    Thomas Henry Huxley (1825–95)