Scalar Field Theory - Classical Scalar Field Theory - Complex Scalar Field Theory

Complex Scalar Field Theory

In a complex scalar field theory, the scalar field takes values in the complex numbers, rather than the real numbers. The action considered normally takes the form

\mathcal{S}=\int \mathrm{d}^{D-1}x \, \mathrm{d}t
\mathcal{L} = \int \mathrm{d}^{D-1}x \, \mathrm{d}t \left[\eta^{\mu\nu}\partial_\mu\phi^*\partial_\nu\phi
-V(|\phi|^2)\right]

This has a U(1) symmetry, whose action on the space of fields rotates, for some real phase angle .

As for the real scalar field, spontaneous symmetry breaking is found if m2 is negative. This gives rise to a Mexican hat potential which is analogous to the double-well potential in real scalar field theory, but now the choice of vacuum breaks a continuous U(1) symmetry instead of a discrete one. This leads to a Goldstone boson.

Read more about this topic:  Scalar Field Theory, Classical Scalar Field Theory

Famous quotes containing the words complex, field and/or theory:

    Specialization is a feature of every complex organization, be it social or natural, a school system, garden, book, or mammalian body.
    Catharine R. Stimpson (b. 1936)

    The field of the poor may yield much food, but it is swept away through injustice.
    Bible: Hebrew, Proverbs 13:23.

    Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.
    Willard Van Orman Quine (b. 1908)