Scalar Field Theory - Classical Scalar Field Theory - Complex Scalar Field Theory

Complex Scalar Field Theory

In a complex scalar field theory, the scalar field takes values in the complex numbers, rather than the real numbers. The action considered normally takes the form

\mathcal{S}=\int \mathrm{d}^{D-1}x \, \mathrm{d}t
\mathcal{L} = \int \mathrm{d}^{D-1}x \, \mathrm{d}t \left[\eta^{\mu\nu}\partial_\mu\phi^*\partial_\nu\phi
-V(|\phi|^2)\right]

This has a U(1) symmetry, whose action on the space of fields rotates, for some real phase angle .

As for the real scalar field, spontaneous symmetry breaking is found if m2 is negative. This gives rise to a Mexican hat potential which is analogous to the double-well potential in real scalar field theory, but now the choice of vacuum breaks a continuous U(1) symmetry instead of a discrete one. This leads to a Goldstone boson.

Read more about this topic:  Scalar Field Theory, Classical Scalar Field Theory

Famous quotes containing the words complex, field and/or theory:

    Instead of seeing society as a collection of clearly defined “interest groups,” society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.
    Diana Crane (b. 1933)

    I see a girl dragged by the wrists
    Across a dazzling field of snow,
    And there is nothing in me that resists.
    Once it would not be so....
    Philip Larkin (1922–1986)

    Could Shakespeare give a theory of Shakespeare?
    Ralph Waldo Emerson (1803–1882)