Saul Kripke - Modal Logic

Modal Logic

Two of Kripke's earlier works, A Completeness Theorem in Modal Logic and Semantical Considerations on Modal Logic, the former written while he was still a teenager, were on the subject of modal logic. The most familiar logics in the modal family are constructed from a weak logic called K, named after Kripke for his contributions to modal logic. Kripke introduced the now-standard Kripke semantics (also known as relational semantics or frame semantics) for modal logics. Kripke semantics is a formal semantics for non-classical logic systems. It was first made for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The discovery of Kripke semantics was a breakthrough in the making of non-classical logics, because the model theory of such logics was absent prior to Kripke.

A Kripke frame or modal frame is a pair, where W is a non-empty set, and R is a binary relation on W. Elements of W are called nodes or worlds, and R is known as the accessibility relation. Depending on the properties of the accessibility relation (transitivity, reflexivity, etc.), the corresponding frame is described, by extension, as being transitive, reflexive, etc.

A Kripke model is a triple, where is a Kripke frame, and is a relation between nodes of W and modal formulas, such that:

  • if and only if ,
  • if and only if or ,
  • if and only if .

We read as "w satisfies A", "A is satisfied in w", or "w forces A". The relation is called the satisfaction relation, evaluation, or forcing relation. The satisfaction relation is uniquely determined by its value on propositional variables.

A formula A is valid in:

  • a model, if for all wW,
  • a frame, if it is valid in for all possible choices of ,
  • a class C of frames or models, if it is valid in every member of C.

We define Thm(C) to be the set of all formulas that are valid in C. Conversely, if X is a set of formulas, let Mod(X) be the class of all frames which validate every formula from X.

A modal logic (i.e., a set of formulas) L is sound with respect to a class of frames C, if L ⊆ Thm(C). L is complete with respect to C if L ⊇ Thm(C).

Semantics is useful for investigating a logic (i.e. a derivation system) only if the semantical entailment relation reflects its syntactical counterpart, the consequence relation (derivability). It is vital to know which modal logics are sound and complete with respect to a class of Kripke frames, and for them, to determine which class it is.

For any class C of Kripke frames, Thm(C) is a normal modal logic (in particular, theorems of the minimal normal modal logic, K, are valid in every Kripke model). However, the converse does not hold generally. There are Kripke incomplete normal modal logics, which is unproblematic, because most of the modal systems studied are complete of classes of frames described by simple conditions.

A normal modal logic L corresponds to a class of frames C, if C = Mod(L). In other words, C is the largest class of frames such that L is sound wrt C. It follows that L is Kripke complete if and only if it is complete of its corresponding class.

Consider the schema T : . T is valid in any reflexive frame : if, then since w R w. On the other hand, a frame which validates T has to be reflexive: fix wW, and define satisfaction of a propositional variable p as follows: if and only if w R u. Then, thus by T, which means w R w using the definition of . T corresponds to the class of reflexive Kripke frames.

It is often much easier to characterize the corresponding class of L than to prove its completeness, thus correspondence serves as a guide to completeness proofs. Correspondence is also used to show incompleteness of modal logics: suppose L1L2 are normal modal logics that correspond to the same class of frames, but L1 does not prove all theorems of L2. Then L1 is Kripke incomplete. For example, the schema generates an incomplete logic, as it corresponds to the same class of frames as GL (viz. transitive and converse well-founded frames), but does not prove the GL-tautology \Box
A\to\Box\Box A.

For any normal modal logic L, a Kripke model (called the canonical model) can be constructed, which validates precisely the theorems of L, by an adaptation of the standard technique of using maximal consistent sets as models. Canonical Kripke models play a role similar to the Lindenbaum–Tarski algebra construction in algebraic semantics.

A set of formulas is L-consistent if no contradiction can be derived from them using the axioms of L, and Modus Ponens. A maximal L-consistent set (an L-MCS for short) is an L-consistent set which has no proper L-consistent superset.

The canonical model of L is a Kripke model, where W is the set of all L-MCS, and the relations R and are as follows:

if and only if for every formula, if then ,
if and only if .

The canonical model is a model of L, as every L-MCS contains all theorems of L. By Zorn's lemma, each L-consistent set is contained in an L-MCS, in particular every formula unprovable in L has a counterexample in the canonical model.

The main application of canonical models are completeness proofs. Properties of the canonical model of K immediately imply completeness of K with respect to the class of all Kripke frames. This argument does not work for arbitrary L, because there is no guarantee that the underlying frame of the canonical model satisfies the frame conditions of L.

We say that a formula or a set X of formulas is canonical with respect to a property P of Kripke frames, if

  • X is valid in every frame which satisfies P,
  • for any normal modal logic L which contains X, the underlying frame of the canonical model of L satisfies P.

A union of canonical sets of formulas is itself canonical. It follows from the preceding discussion that any logic axiomatized by a canonical set of formulas is Kripke complete, and compact.

The axioms T, 4, D, B, 5, H, G (and thus any combination of them) are canonical. GL and Grz are not canonical, because they are not compact. The axiom M by itself is not canonical (Goldblatt, 1991), but the combined logic S4.1 (in fact, even K4.1) is canonical.

In general, it is undecidable whether a given axiom is canonical. We know a nice sufficient condition: H. Sahlqvist identified a broad class of formulas (now called Sahlqvist formulas) such that:

  • a Sahlqvist formula is canonical,
  • the class of frames corresponding to a Sahlqvist formula is first-order definable,
  • there is an algorithm which computes the corresponding frame condition to a given Sahlqvist formula.

This is a powerful criterion: for example, all axioms listed above as canonical are (equivalent to) Sahlqvist formulas. A logic has the finite model property (FMP) if it is complete with respect to a class of finite frames. An application of this notion is the decidability question: it follows from Post's theorem that a recursively axiomatized modal logic L which has FMP is decidable, provided it is decidable whether a given finite frame is a model of L. In particular, every finitely axiomatizable logic with FMP is decidable.

There are various methods for establishing FMP for a given logic. Refinements and extensions of the canonical model construction often work, using tools such as filtration or unravelling. As another possibility, completeness proofs based on cut-free sequent calculi usually produce finite models directly.

Most of the modal systems used in practice (including all listed above) have FMP.

In some cases, we can use FMP to prove Kripke completeness of a logic: every normal modal logic is complete wrt a class of modal algebras, and a finite modal algebra can be transformed into a Kripke frame. As an example, Robert Bull proved using this method that every normal extension of S4.3 has FMP, and is Kripke complete.

Kripke semantics has a straightforward generalization to logics with more than one modality. A Kripke frame for a language with as the set of its necessity operators consists of a non-empty set W equipped with binary relations Ri for each iI. The definition of a satisfaction relation is modified as follows:

if and only if

A simplified semantics, discovered by Tim Carlson, is often used for polymodal provability logics. A Carlson model is a structure with a single accessibility relation R, and subsets DiW for each modality. Satisfaction is defined as:

if and only if

Carlson models are easier to visualize and to work with than usual polymodal Kripke models; there are, however, Kripke complete polymodal logics which are Carlson incomplete.

In "Semantical Considerations on Modal Logic", published in 1963, Kripke responded to a difficulty with classical quantification theory. The motivation for the world-relative approach was to represent the possibility that objects in one world may fail to exist in another. If standard quantifier rules are used, however, every term must refer to something that exists in all the possible worlds. This seems incompatible with our ordinary practice of using terms to refer to things that exist contingently.

Kripke's response to this difficulty was to eliminate terms. He gave an example of a system that uses the world-relative interpretation and preserves the classical rules. However, the costs are severe. First, his language is artificially impoverished, and second, the rules for the propositional modal logic must be weakened.

Kripke's possible worlds theory has been used by narratologists (beginning with Pavel and Dolezel) to understand "reader's manipulation of alternative plot developments, or the characters' planned or fantasized alternative action series," has become especially useful in the analysis of hyperfiction.

Read more about this topic:  Saul Kripke

Famous quotes containing the word logic:

    ...some sort of false logic has crept into our schools, for the people whom I have seen doing housework or cooking know nothing of botany or chemistry, and the people who know botany and chemistry do not cook or sweep. The conclusion seems to be, if one knows chemistry she must not cook or do housework.
    Ellen Henrietta Swallow Richards (1842–1911)