Sagittarius A* - History

History

Sgr A* was discovered on February 13 and 15, 1974, by astronomers Bruce Balick and Robert Brown using the baseline interferometer of the National Radio Astronomy Observatory.

On October 16, 2002, an international team led by Rainer Schödel of the Max Planck Institute for Extraterrestrial Physics reported the observation of the motion of the star S2 near Sagittarius A* over a period of ten years. According to the team's analysis, the data ruled out the possibility that Sgr A* contains a cluster of dark stellar objects or a mass of degenerate fermions, strengthening the evidence for a massive black hole. The observations of S2 used near-infra red (NIR) interferometry (in the K-band, i.e. 2.2 μm) because of reduced interstellar extinction in this band. SiO masers were used to align NIR images with radio observations, as they can be observed in both NIR and radio bands. The rapid motion of S2 (and other nearby stars) easily stood out against slower-moving stars along the line-of-sight so these could be subtracted from the images.

The VLBI radio observations of Sagittarius A* could also be aligned centrally with the images so S2 could be seen to orbit Sagittarius A*. From examining the Keplerian orbit of S2, they determined the mass of Sagittarius A* to be 2.6 ± 0.2 million solar masses, confined in a volume with a radius no more than 17 light-hours (120 AU). Later observations of the star S14 showed the mass of the object to be about 4.1 million solar masses within a volume with radius no larger than 6.25 light-hours (45 AU) or about 6.7 billion kilometres. They also determined the distance to the galactic centre (the rotational center of the Milky Way galaxy), which is important in calibrating astronomical distance scales, as 8.0 ± 0.6 × 103 parsecs.

In November 2004 a team of astronomers reported the discovery of a potential intermediate-mass black hole, referred to as GCIRS 13E, orbiting three light-years from Sagittarius A*. This black hole of 1,300 solar masses is within a cluster of seven stars. This observation may add support to the idea that supermassive black holes grow by absorbing nearby smaller black holes and stars.

After monitoring stellar orbits around Sagittarius A* for 16 years, Gillessen et al. estimate the object's mass at 4.31 ± 0.38 million solar masses. The result was announced in 2008 and published in The Astrophysical Journal in 2009. Reinhard Genzel, team leader of the research, said the study has delivered "what is now considered to be the best empirical evidence that super-massive black holes do really exist. The stellar orbits in the galactic centre show that the central mass concentration of four million solar masses must be a black hole, beyond any reasonable doubt."

Read more about this topic:  Sagittarius A*

Famous quotes containing the word history:

    Tell me of the height of the mountains of the moon, or of the diameter of space, and I may believe you, but of the secret history of the Almighty, and I shall pronounce thee mad.
    Henry David Thoreau (1817–1862)

    Don’t give your opinions about Art and the Purpose of Life. They are of little interest and, anyway, you can’t express them. Don’t analyse yourself. Give the relevant facts and let your readers make their own judgments. Stick to your story. It is not the most important subject in history but it is one about which you are uniquely qualified to speak.
    Evelyn Waugh (1903–1966)

    The history of progress is written in the blood of men and women who have dared to espouse an unpopular cause, as, for instance, the black man’s right to his body, or woman’s right to her soul.
    Emma Goldman (1869–1940)