Safety of Particle Collisions at The Large Hadron Collider - Large Hadron Collider - Specific Concerns - Strangelets

Strangelets

Strangelets are small fragments of strange matter—a hypothetical form of quark matter—that contain roughly equal numbers of up, down, and strange quarks and that are more stable than ordinary nuclei (strangelets would range in size from a few femtometers to a few meters across). If strangelets can actually exist, and if they were produced at the LHC, they could conceivably initiate a runaway fusion process in which all the nuclei in the planet would be converted to strange matter, similar to a strange star.

The probability of the creation of strangelets decreases at higher energies. As the LHC operates at higher energies than the RHIC or the heavy ion programs of the 1980s and 1990s, the LHC is less likely to produce strangelets than its predecessors. Furthermore, models indicate that strangelets are only stable or long-lived at low temperatures. Strangelets are bound at low energies (in the range of 1–10 MeV), while the collisions in the LHC release energies in the range of 7–14 TeV. Thermodynamics very strongly disfavors the formation of a cold condensate that is an order of magnitude cooler than the surrounding medium. As an example, it is far more probable that ice will form spontaneously in boiling water.

Read more about this topic:  Safety Of Particle Collisions At The Large Hadron Collider, Large Hadron Collider, Specific Concerns