Rubin Causal Model - Relations To Other Approaches

Relations To Other Approaches

In the view of Pearl (2000), the Rubin Causal Model (RCM) is subsumed by the Structural Equation Model (SEM) used in econometrics and the social sciences, in its extended nonparametric form. That view, which has long been argued by Heckman (2005) is presented formally in Pearl (2000). The key connection between the RCM and SEM rests on interpreting the "potential outcome" variable Yx(u) to be the solution for variable Y in a modified structural model, in which the external intervention X=x is emulated by replacing the equation that determines X by the constant equation X=x. The variable u, which in the RCM stands for the identity of each experimental unit (e.g., a patient or an agricultural lot,) is represented in the SEM formulation by a vector of exogeneous variables (usually unobserved) that characterize that unit. With this interpretation, every theorem in RCM can be shown to be a theorem in SEM and vice versa. This interpretation has led to a complete axiomatization of RCM and, based on the derivations of Shpitser-Pearl (2006), a complete solution to the identification of causal effects, using graphs. Complete solution means that, for any subset X of variables and a set A of causal assumptions encoded in a graph G, it is possible to determine algorithmically whether the causal effect P(Yx = y) can be estimated consistently from non-experimental data and, if so, what form the estimand of P(Yx = y) should have. Using that estimand, it is possible then to estimate, from observational study, the average causal effect over the population:

.

From the perspective of Pearl and his colleagues, a major shortcoming of RCM is that all assumptions and background knowledge pertaining to a given problem must first be translated into the language of counterfactuals (e.g., ignorability) before analysis can commence. In SEM, by comparison, Pearl (2000) and Heckman (2008) hold that background knowledge is expressed directly in the vocabulary of ordinary scientific discourse, invoking cause-effect relationships among realizable, not hypothetical variables.

The Rubin causal model has also been connected to instrumental variables (Angrist, Imbens, and Rubin, 1996) and other techniques for causal inference. For more on the connections between the Rubin causal model, structural equation modeling, and other statistical methods for causal inference, see Morgan and Winship (2007) and Pearl (2009).

Read more about this topic:  Rubin Causal Model

Famous quotes containing the words relations and/or approaches:

    I want relations which are not purely personal, based on purely personal qualities; but relations based upon some unanimous accord in truth or belief, and a harmony of purpose, rather than of personality. I am weary of personality.... Let us be easy and impersonal, not forever fingering over our own souls, and the souls of our acquaintances, but trying to create a new life, a new common life, a new complete tree of life from the roots that are within us.
    —D.H. (David Herbert)

    These were not men, they were battlefields. And over them, like the sky, arched their sense of harmony, their sense of beauty and rest against which their misery and their struggles were an offence, to which their misery and their struggles were the only approaches they could make, of which their misery and their struggles were an integral part.
    Rebecca West (1892–1983)