Definition of Propriety
Rothenberg defined propriety in a very general context; however for nearly all purposes it suffices to consider what in musical contexts is often called a periodic scale, though in fact these correspond to what mathematicians call a quasiperiodic function. These are scales which repeat at a certain fixed interval higher each note in a certain finite set of notes. The fixed interval is typically an octave, and so the scale consists of all notes belonging to a finite number of pitch classes. If βi denotes a scale element for each integer i, then βi+℘ = βi + Ω, where Ω is typically an octave of 1200 cents, though it could be any fixed amount of cents; and ℘ is the number of scale elements in the Ω period, which is sometimes termed the size of the scale.
For any i one can consider the set of all differences by i steps between scale elements class(i) = {βn+i − βn}. We may in the usual way extend the ordering on the elements of a set to the sets themselves, saying A < B if and only if for every a ∈ A and b ∈ B we have a < b. Then a scale is strictly proper if i < j implies class(i) < class(j). It is proper if i ≤ j implies class(i) ≤ class(j). Strict propriety implies propriety but a proper scale need not be strictly proper; an example is the diatonic scale in equal temperament, where the tritone interval belongs both to the class of the fourth (as an augmented fourth) and to the class of the fifth (as a diminished fifth). Strict propriety is the same as coherence in the sense of Balzano.
Read more about this topic: Rothenberg Propriety
Famous quotes containing the words definition of, definition and/or propriety:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“Those expressions are omitted which can not with propriety be read aloud in the family.”
—Thomas Bowdler (17541825)