Formal Definition
Formally, a rotation system is defined as a pair (σ,θ) where σ and θ are permutations acting on the same ground set B, θ is a fixed-point-free involution, and the group <σ,θ> generated by σ and θ acts transitively on B.
To derive a rotation system from a 2-cell embedding of a connected multigraph G on an oriented surface, let B consist of the darts (or flags, or half-edges) of G; that is, for each edge of G we form two elements of B, one for each endpoint of the edge. Even when an edge has the same vertex as both of its endpoints, we create two darts for that edge. We let θ(b) be the other dart formed from the same edge as b; this is clearly an involution with no fixed points. We let σ(b) be the dart in the clockwise position from b in the cyclic order of edges incident to the same vertex, where "clockwise" is defined by the orientation of the surface.
If a multigraph is embedded on an orientable but not oriented surface, it generally corresponds to two rotation systems, one for each of the two orientations of the surface. These two rotation systems have the same involution θ, but the permutation σ for one rotation system is the inverse of the corresponding permutation for the other rotation system.
Read more about this topic: Rotation System
Famous quotes containing the words formal and/or definition:
“The spiritual kinship between Lincoln and Whitman was founded upon their Americanism, their essential Westernism. Whitman had grown up without much formal education; Lincoln had scarcely any education. One had become the notable poet of the day; one the orator of the Gettsyburg Address. It was inevitable that Whitman as a poet should turn with a feeling of kinship to Lincoln, and even without any association or contact feel that Lincoln was his.”
—Edgar Lee Masters (18691950)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)