Rotation Operator (vector Space) - Mathematical Formulation

Mathematical Formulation

Let

be a coordinate system fixed in the body that through a change in orientation is brought to the new directions

Any vector

rotating with the body is then brought to the new direction

i.e. this is a linear operator

The matrix of this operator relative to the coordinate system

is


\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}
\end{bmatrix} =
\begin{bmatrix} \langle\hat e_1 | \mathbf{A}\hat e_1 \rangle & \langle\hat e_1 | \mathbf{A}\hat e_2 \rangle & \langle\hat e_1 | \mathbf{A}\hat e_3 \rangle \\ \langle\hat e_2 | \mathbf{A}\hat e_1 \rangle & \langle\hat e_2 | \mathbf{A}\hat e_2 \rangle & \langle\hat e_2 | \mathbf{A}\hat e_3 \rangle \\ \langle\hat e_3 | \mathbf{A}\hat e_1 \rangle & \langle\hat e_3 | \mathbf{A}\hat e_2 \rangle & \langle\hat e_3 | \mathbf{A}\hat e_3 \rangle
\end{bmatrix}

As

 \sum_{k=1}^3 A_{ki}A_{kj}= \langle \mathbf{A}\hat e_i | \mathbf{A}\hat e_j \rangle
= \begin{cases}
0 & i\neq j, \\ 1 & i = j,
\end{cases}

or equivalently in matrix notation


\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}
\end{bmatrix}^T
\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}
\end{bmatrix} =
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{bmatrix}

the matrix is orthogonal and as a "right hand" base vector system is re-orientated into another "right hand" system the determinant of this matrix has the value 1.

Read more about this topic:  Rotation Operator (vector Space)

Famous quotes containing the words mathematical and/or formulation:

    What he loved so much in the plant morphological structure of the tree was that given a fixed mathematical basis, the final evolution was so incalculable.
    —D.H. (David Herbert)

    In necessary things, unity; in disputed things, liberty; in all things, charity.
    —Variously Ascribed.

    The formulation was used as a motto by the English Nonconformist clergyman Richard Baxter (1615-1691)