Properties
The rotation number is invariant under topological conjugacy, and even topological semiconjugacy: if f and g are two homeomorphisms of the circle and
for a continuous map h of the circle into itself (not necessarily homeomorphic) then f and g have the same rotation numbers. It was used by Poincaré and Arnaud Denjoy for topological classification of homeomorphisms of the circle. There are two distinct possibilities.
- The rotation number of f is a rational number p/q (in the lowest terms). Then f has a periodic orbit, every periodic orbit has period q, and the order of the points on each such orbit coincides with the order of the points for a rotation by p/q. Moreover, every forward orbit of f converges to a periodic orbit. The same is true for backward orbits, corresponding to iterations of f−1, but the limiting periodic orbits in forward and backward directions may be different.
- The rotation number of f is an irrational number θ. Then f has no periodic orbits (this follows immediately by considering a periodic point x of f). There are two subcases.
-
- There exists a dense orbit. In this case f is topologically conjugate to the irrational rotation by the angle θ and all orbits are dense. Denjoy proved that this possibility is always realized when f is twice continuously differentiable.
- There exists a Cantor set C invariant under f. Then C is a unique minimal set and the orbits of all points both in forward and backward direction converge to C. In this case, f is semiconjugate to the irrational rotation by θ, and the semiconjugating map h of degree 1 is constant on components of the complement of C.
Rotation number is continuous when viewed as a map from the group of homeomorphisms (with topology) of the circle into the circle.
Read more about this topic: Rotation Number
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)