Rollin Hotchkiss - Research Career

Research Career

At the Rockefeller Institute, Hotchkiss initially worked as an assistant to Oswald Avery and Walter Goebel, and was encouraged to learn more biology at a summer courses at the Marine Biological Laboratory. His early work isolating and synthesizing derivatives of glucoronic acid led to the identification of one of the specific polysaccharides in the capsule of type III pneumococci. Hotchkiss spent the 1937-1938 academic year in the lab of Heinz Holter and Kaj Linderstrøm-Lang at Carlsberg Laboratory learning protein analysis techniques. In 1938, he began collaborating with René Dubos to isolate and study antibiotics produced by soil bacteria. Their work on gramicidin and tyrocidine led to the first commercial antibiotics, and with Fritz Lipmann they found that the antibiotics include D-amino acids.

During the late 1930s, Hotchkiss was also strongly critical of the Bergann-Niemann hypothesis of protein structure, the proposal by fellow Rockefeller biochemists Max Bergmann and Carl Niemann that protein structures always consist of multiples of 288 amino acids. (This would also be a feature of Dorothy Wrinch's cyclol hypothesis of protein structure).

In 1946, in the wake of the Avery-MacLeod-McCarty experiment showing that DNA, not protein, had the power to transform bacteria from one type to another, Hotchkiss rejoined Avery's lab. His work on protein analysis helped answer Avery's critics who argued that the experiment was not sufficiently rigorous to rule out protein contamination (and thus the possibility that protein was the transforming factor). Hotchkiss found that virtually all the detected nitrogen in the purified DNA used in for the transformation experiments came from glycine, a breakdown product of the nucleotide base adenine, and estimated that undetected protein contamination was at most .02%, although he did not publish this result until 1952 (the year of the Hershey-Chase experiment). In 1948 Hotchkiss used paper chromatography to quantify the base composition of DNA and, independently of Erwin Chargaff, found that the base ratios differed from species to species.

In 1951, Hotchkiss showed that purified bacterial DNA could be used to transfer penicillin resistance from one strain of bacteria to another without changing the capsule type (the main identifying feature of different types of the same bacterial species). His subsequent worked helped establish the basics of bacterial genetics, showing that many features of classical genetics (including genetic linkage) have parallels in bacteria, despite their lack of chromosomes. Hotchkiss continued working in molecular genetics until his retirement in 1982, including significant collaborations with Julius Marmur, Maurice Fox, Alexander Tomasz, Joan Kent, Sanford Lacks, Elena Ottolenghi, and his wife Magda Gabor-Hotchkiss.

In the mid-1960s, Hotchkiss became interested in the potential dangers of genetic engineering (a term he helped to popularize). Through the early 1970s he articulated many of the concerns that led to the 1975 Asilomar Conference on Recombinant DNA.

Hotchkiss was a member of the American Academy of Arts and Sciences and the National Academy of Sciences (elected in 1961), and served as president of the Genetics Society of America from 1971 to 1972. After leaving Rockefeller University in 1982, he worked as a research professor at the University at Albany, SUNY until retiring to Lenox, Massachusetts in 1986. Hotchkiss died December 12, 2004 of congestive heart failure.

Read more about this topic:  Rollin Hotchkiss

Famous quotes containing the words research and/or career:

    The great question that has never been answered, and which I have not yet been able to answer, despite my thirty years of research into the feminine soul, is “What does a woman want?” [Was will das Weib?]
    Sigmund Freud (1856–1939)

    In time your relatives will come to accept the idea that a career is as important to you as your family. Of course, in time the polar ice cap will melt.
    Barbara Dale (b. 1940)