Robust Statistics

Robust statistics are statistics with good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normally distributed. Robust statistical methods have been developed for many common problems, such as estimating location, scale and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from parametric distributions. For example, robust methods work well for mixtures of two normal distributions with different standard-deviations, for example, one and three; under this model, non-robust methods like a t-test work badly.

Read more about Robust Statistics:  Introduction, Examples, Definition, Example: Speed of Light Data, Measures of Robustness, M-estimators, Robust Parametric Approaches, Related Concepts, Replacing Outliers and Missing Values, See Also

Famous quotes containing the words robust and/or statistics:

    Standing armies can never consist of resolute robust men; they may be well-disciplined machines, but they will seldom contain men under the influence of strong passions, or with very vigorous faculties.
    Mary Wollstonecraft (1759–1797)

    July 4. Statistics show that we lose more fools on this day than in all the other days of the year put together. This proves, by the number left in stock, that one Fourth of July per year is now inadequate, the country has grown so.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)