History
The logical building block for this theory was the use of the Gaussian air pollutant dispersion equation for point sources. One of the early point source air pollutant plume dispersion equations was derived by Bosanquet and Pearson in 1936. Their equation did not include the effect of ground reflection of the pollutant plume. Sir Graham Sutton derived a point source air pollutant plume dispersion equation in 1947 which included the assumption of Gaussian distribution for the vertical and crosswind dispersion of the plume and also addressed the effect of ground reflection of the plume. Further advances were made by G. A. Briggs in model refinement and validation and by D.B. Turner for his user-friendly workbook that included screening calculations which do not require a computer.
In seeing the need to develop a line source model to approach the study of roadway air pollution, Michael Hogan and Richard Venti developed a closed form solution to integrating the point source equation in a series of publications.
While the ESL mathematical model was completed for a line source by 1970, model refinement resulted in a “strip source”, emulating the horizontal extent of the roadway surface. This theory would be the precursor of area source dispersion models. But their focus was roadway simulation, so they proceeded with the development of a computer model by adding to the team Leda Patmore, a computer programmer in the field of atmospheric physics and satellite trajectory calculations. A working computer model was produced by late 1970; then the model was calibrated with carbon monoxide field measurements targeting from traffic on U.S. Route 101 in Sunnyvale, California.
The ESL model received endorsement from the U.S. Environmental Protection Agency (EPA) in the form of a major grant to validate the model using actual roadway tests of tracer gas sulfur hexafluoride dispersion. That gas was chosen since it does not occur naturally or in vehicular emissions and provides a unique tracer for such dispersion studies. Part of the Environmental Protection Agency’s motives may have been to bring the model into public domain. After a successful validation through the EPA research, the model was soon put to use in a variety of settings to forecast air pollution levels in the vicinity of roadways. The ESL group applied the model to the U.S. Route 101 bypass project in Cloverdale, California, the extension of Interstate 66 through Arlington, Virginia, the widening of the New Jersey Turnpike through Raritan and East Brunswick, New Jersey, and several transportation projects in Boston for the Boston Transportation Planning Review.
By the early 1970s at least two other research groups were known to be actively developing some type to roadway air dispersion model: the Environmental Research and Technology group of Lexington, Massachusetts and Caltrans headquarters in Sacramento, California. The Caline model of Caltrans borrowed some of the technology from the ESL Inc. group, since Caltrans funded some of the early model application work in Cloverdale and other locations and was given rights to use parts of their model.
Read more about this topic: Roadway Air Dispersion Modeling
Famous quotes containing the word history:
“English history is all about men liking their fathers, and American history is all about men hating their fathers and trying to burn down everything they ever did.”
—Malcolm Bradbury (b. 1932)
“For a transitory enchanted moment man must have held his breath in the presence of this continent, compelled into an aesthetic contemplation he neither understood nor desired, face to face for the last time in history with something commensurate to his capacity for wonder.”
—F. Scott Fitzgerald (18961940)
“... all big changes in human history have been arrived at slowly and through many compromises.”
—Eleanor Roosevelt (18841962)