RNA Polymerase - RNA Polymerase Action

RNA Polymerase Action

RNA polymerase binding in bacteria involves the sigma factor recognizing core promoter region containing the promoter -35 and -10 elements and, at some promoters, also the α subunit C-terminal domain recognizing promoter upstream elements. There are multiple interchangeable sigma factors, each of which recognizes a distinct set of promoters. For example, in E. coli, σ70 is expressed under normal conditions and recognizes promoters for genes required under normal conditions "house-keeping genes"), while σ32 recognizes promoters for genes required at high temperatures ("heat-shock genes").

After binding to the DNA, the RNA polymerase switches from a closed complex to an open complex. This change involves the separation of the DNA strands to form an unwound section of DNA of approximately 13 bp, referred to as the transcription bubble. Ribonucleotides are base-paired to the template DNA strand, according to Watson-Crick base-pairing interactions. Supercoiling plays an important part in polymerase activity because of the unwinding and rewinding of DNA. Because regions of DNA in front of RNAP are unwound, there is compensatory positive supercoils. Regions behind RNAP are rewound and negative supercoils are present.

As noted above, RNA polymerase makes contacts with the promoter region. However these stabilizing contacts inhibit the enzyme's ability to access DNA further downstream and thus the synthesis of the full-length product. Once the open complex is stabilized, RNA polymerase synthesizes an RNA strand to establish a DNA-RNA heteroduplex (~8-9 bp) at the active center, which stabilizes the elongation complex. In order to accomplish RNA synthesis, RNA polymerase must maintain promoter contacts while unwinding more downstream DNA for synthesis, "scrunching" more downstream DNA into the initiation complex. During the promoter escape transition, RNA polymerase is considered a "stressed intermediate." Thermodynamically the stress accumulates from the DNA-unwinding and DNA-compaction activities. Once the DNA-RNA heteroduplex is long enough, RNA polymerase releases its upstream contacts and effectively achieves the promoter escape transition into the elongation phase. However, promoter escape is not the only outcome. RNA polymerase can also relieve the stress by releasing its downstream contacts, arresting transcription. The paused transcribing complex has two options: (1) release the nascent transcript and begin anew at the promoter or (2) reestablish a new 3'OH on the nascent transcript at the active site via RNA polymerase's catalytic activity and recommence DNA scrunching to achieve promoter escape. Scientists have coined the term "abortive initiation" to explain the unproductive cycling of RNA polymerase before the promoter escape transition. The extent of abortive initiation depends on the presence of transcription factors and the strength of the promoter contacts.

Read more about this topic:  RNA Polymerase

Famous quotes containing the word action:

    The United States must be neutral in fact as well as in name.... We must be impartial in thought as well as in action ... a nation that neither sits in judgment upon others nor is disturbed in her own counsels and which keeps herself fit and free to do what is honest and disinterested and truly serviceable for the peace of the world.
    Woodrow Wilson (1856–1924)