Ring (mathematics) - Noncommutative Rings

Noncommutative Rings

The study of noncommutative rings is a major area in modern algebra; especially ring theory. Often noncommutative rings possess interesting invariants that commutative rings do not. As an example, there exist rings which contain non-trivial proper left or right ideals, but are still simple; that is contain no non-trivial proper (two-sided) ideals.

The theory of vector spaces is one illustration of a special case of an object studied in noncommutative ring theory. In linear algebra, the "scalars of a vector space" are required to lie in a field - a commutative division ring. The concept of a module, however, requires only that the scalars lie in an abstract ring. Neither commutativity nor the division ring assumption is required on the scalars in this case. Module theory has various applications in noncommutative ring theory, as one can often obtain information about the structure of a ring by making use of its modules. The concept of the Jacobson radical of a ring; that is, the intersection of all right/left annihilators of simple right/left modules over a ring, is one example. The fact that the Jacobson radical can be viewed as the intersection of all maximal right/left ideals in the ring, shows how the internal structure of the ring is reflected by its modules. It is also remarkable that the intersection of all maximal right ideals in a ring is the same as the intersection of all maximal left ideals in the ring, in the context of all rings; whether commutative or noncommutative. Therefore, the Jacobson radical also captures a concept which may seem to be not well-defined for noncommutative rings.

Noncommutative rings serve as an active area of research due to their ubiquity in mathematics. For instance, the ring of n by n matrices over a field is noncommutative despite its natural occurrence in geometry, physics and many parts of mathematics. More generally, endomorphism rings of abelian groups are rarely commutative, the simplest example being the endomorphism ring of the Klein four-group.

Noncommutative rings, like noncommutative groups, are not very well understood. For instance, although every finite abelian group is the direct sum of (finite) cyclic groups of prime-power order, non-abelian groups do not possess such a simple structure. Likewise, various invariants exist for commutative rings, whereas invariants of noncommutative rings are difficult to find. As an example, the nilradical, although "innocent" in nature, need not be an ideal unless the ring is assumed to be commutative. Specifically, the set of all nilpotent elements in the ring of all n x n matrices over a division ring never forms an ideal, irrespective of the division ring chosen. Therefore, the nilradical cannot be studied in noncommutative ring theory. Note however that there are analogues of the nilradical defined for noncommutative rings, that coincide with the nilradical when commutativity is assumed.

One of the best known noncommutative rings is the division ring of quaternions.

Read more about this topic:  Ring (mathematics)

Famous quotes containing the word rings:

    It is told that some divorcees, elated by their freedom, pause on leaving the courthouse to kiss a front pillar, or even walk to the Truckee to hurl their wedding rings into the river; but boys who recover the rings declare they are of the dime-store variety, and accuse the throwers of fraudulent practices.
    —Administration in the State of Neva, U.S. public relief program. Nevada: A Guide to the Silver State (The WPA Guide to Nevada)