Rindler Coordinates - Symmetries

Symmetries

Since the Rindler chart is a coordinate chart for Minkowski spacetime, we expect to find ten linearly independent Killing vector fields. Indeed, in the Cartesian chart we can readily find ten linearly independent Killing vector fields, generating respectively one parameter subgroups of time translation, three spatials, three rotations and three boosts. Together these generate the (proper isochronous) Poincaré group, the symmetry group of Minkowski spacetime.

However, it is instructive to write down and solve the Killing vector equations directly. We obtain four familiar looking Killing vector fields

(time translation, spatial translations orthogonal to the direction of acceleration, and spatial rotation orthogonal to the direction of acceleration) plus six more:

\begin{align} &\exp(\pm t) \, \left( \frac{y}{x} \, \partial_t \pm \left \right)\\ &\exp(\pm t) \, \left( \frac{z}{x} \, \partial_t \pm \left \right)\\ &\exp(\pm t) \, \left( \frac{1}{x} \, \partial_t \pm \partial_x \right)
\end{align}

(where the signs are chosen consistently + or −). We leave it as an exercise to figure out how these are related to the standard generators; here we wish to point out that we must be able to obtain generators equivalent to in the Cartesian chart, yet the Rindler wedge is obviously not invariant under this translation. How can this be? The answer is that like anything defined by a system of partial differential equations on a smooth manifold, the Killing equation will in general have locally defined solutions, but these might not exist globally. That is, with suitable restrictions on the group parameter, a Killing flow can always be defined in a suitable local neighborhood, but the flow might not be well-defined globally. This has nothing to do with Lorentzian manifolds per se, since the same issue arises in the study of general smooth manifolds.

Read more about this topic:  Rindler Coordinates