Resin - Overview

Overview

More broadly, the term "resin" also encompasses a great many synthetic substances of similar mechanical properties (thick liquids that harden into transparent solids), as well as shellacs of insects of the superfamily Coccoidea.

Other liquid compounds found in plants or exuded by plants, such as sap, latex, or mucilage, are sometimes confused with resin, but are not chemically the same. Saps, in particular, serve a nutritive function that resins do not. There is no consensus on why plants secrete resins. However, resins consist primarily of secondary metabolites or compounds that apparently play no role in the primary physiology of a plant. While some scientists view resins only as waste products, their protective benefits to the plant are widely documented. The toxic resinous compounds may confound a wide range of herbivores, insects, and pathogens; while the volatile phenolic compounds may attract benefactors such as parasitoids or predators of the herbivores that attack the plant.

The word "resin" has been applied in the modern world to nearly any component of a liquid that will set into a hard lacquer or enamel-like finish. An example is nail polish, a modern product which contains "resins" that are organic compounds, but not classical plant resins. Certain "casting resins" and synthetic resins (such as epoxy resin) have also been given the name "resin" because they solidify in the same way as some plant resins, but synthetic resins are liquid monomers of thermosetting plastics, and do not derive from plants.

The English word originates from the late 14th century Old French resine, from L. resina "resin," from Greek rhetine "resin of the pine," of unknown earlier origin.

Read more about this topic:  Resin