Relativistic Rocket

A relativistic rocket is any spacecraft that is travelling at a velocity close enough to light speed for relativistic effects to become significant. What "significant" means is a matter of context, but generally speaking a velocity of at least 50% of the speed of light (0.5c) is required. The time dilation factor, mass factor, and length contraction factor (all these factors equal the Lorentz factor) are 1.15 at 0.5c. Above this speed Einsteinian physics are required to describe motion. Below this speed, motion is approximately described by Newtonian physics and the Tsiolkovsky rocket equation can be used.

We define a rocket as carrying all of its reaction mass, energy, and engines with it. Bussard ramjets, RAIRs, light sails, and maser or laser-electric vehicles are not rockets.

Achieving relativistic velocities is difficult, requiring advanced forms of spacecraft propulsion that have not yet been adequately developed. Nuclear pulse propulsion could theoretically achieve 0.1c using current known technologies, but would still require many engineering advances to achieve this. The relativistic gamma factor at 10% of light velocity is 1.005. The time dilation factor of 1.005 which occurs at 10% of light velocity is too small to be of major significance. A 0.1c velocity interstellar rocket is thus considered to be a non-relativistic rocket because its motion is quite accurately described by Newtonian physics alone.

Relativistic rockets are usually seen discussed in the context of interstellar travel, since most would require a great deal of space to accelerate up to those velocities. They are also found in some thought experiments such as the twin paradox.

Read more about Relativistic Rocket:  Relativistic Rocket Equation, Matter-antimatter Annihilation Rockets

Famous quotes containing the word rocket:

    Along a parabola life like a rocket flies,
    Mainly in darkness, now and then on a rainbow.
    Andrei Voznesensky (b. 1933)