Regular Paperfolding Sequence - General Paperfolding Sequence

General Paperfolding Sequence

The regular paperfolding sequence corresponds to folding a strip of paper consistently in the same direction. If we allow the direction of the fold to vary at each step we obtain a more general class of sequences. Given a binary sequence (fi), we can define a general paperfolding sequence with folding instructions (fi).

For a binary word w, let w‡ denote the reverse of the complement of w. Define an operator Fa as

and then define a sequence of words depending on the (fi) by w0 = ε,

The limit w of the sequence wn is a paperfolding sequence. The regular paperfolding sequence corresponds to the folding sequence fi = 1 for all i.

If n = m·2k where m is odd then

t_n =
\begin{cases}
f_j & \text{if } m = 1 \mod 4 \\
1-f_j & \text{if } m = 3 \mod 4
\end{cases}

which may be used as a definition of a paperfolding sequence.

Read more about this topic:  Regular Paperfolding Sequence

Famous quotes containing the words general and/or sequence:

    The General Strike has taught the working class more in four days than years of talking could have done.
    —A.J. (Arthur James)

    We have defined a story as a narrative of events arranged in their time-sequence. A plot is also a narrative of events, the emphasis falling on causality. “The king died and then the queen died” is a story. “The king died, and then the queen died of grief” is a plot. The time sequence is preserved, but the sense of causality overshadows it.
    —E.M. (Edward Morgan)