General Paperfolding Sequence
The regular paperfolding sequence corresponds to folding a strip of paper consistently in the same direction. If we allow the direction of the fold to vary at each step we obtain a more general class of sequences. Given a binary sequence (fi), we can define a general paperfolding sequence with folding instructions (fi).
For a binary word w, let w‡ denote the reverse of the complement of w. Define an operator Fa as
and then define a sequence of words depending on the (fi) by w0 = ε,
The limit w of the sequence wn is a paperfolding sequence. The regular paperfolding sequence corresponds to the folding sequence fi = 1 for all i.
If n = m·2k where m is odd then
which may be used as a definition of a paperfolding sequence.
Read more about this topic: Regular Paperfolding Sequence
Famous quotes containing the words general and/or sequence:
“The General Strike has taught the working class more in four days than years of talking could have done.”
—A.J. (Arthur James)
“We have defined a story as a narrative of events arranged in their time-sequence. A plot is also a narrative of events, the emphasis falling on causality. The king died and then the queen died is a story. The king died, and then the queen died of grief is a plot. The time sequence is preserved, but the sense of causality overshadows it.”
—E.M. (Edward Morgan)