Regular Logic and Regular Categories
Regular logic is the fragment of first-order logic that can express statements of the form
where and are regular formulae i.e. formulae built up from atomic formulae, the truth constant, binary meets and existential quantification. Such formulae can be interpreted in a regular category, and the interpretation is a model of a sequent
if the interpretation of factors through the interpretation of . This gives for each theory (set of sequences) and for each regular category C a category Mod(T,C) of models of T in C. This construction gives a functor Mod(T,-):RegCat→Cat from the category RegCat of small regular categories and regular functors to small categories. It is an important result that for each theory T and for each category C, there is a category R(T) and an equivalence
which is natural in C. Up to equivalence any small regular category C arises this way as the classifying category, of a regular theory.
Read more about this topic: Regular Category
Famous quotes containing the words regular and/or categories:
“I couldnt afford to learn it, said the Mock Turtle with a sigh. I only took the regular course.
What was that? inquired Alice.
Reeling and Writhing, of course, to begin with, the Mock Turtle replied; and then the different branches of ArithmeticAmbition, Distraction, Uglification, and Derision.
I never heard of Uglification, Alice ventured to say.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Of course Im a black writer.... Im not just a black writer, but categories like black writer, woman writer and Latin American writer arent marginal anymore. We have to acknowledge that the thing we call literature is more pluralistic now, just as society ought to be. The melting pot never worked. We ought to be able to accept on equal terms everybody from the Hassidim to Walter Lippmann, from the Rastafarians to Ralph Bunche.”
—Toni Morrison (b. 1931)