Regular Category - Regular Logic and Regular Categories

Regular Logic and Regular Categories

Regular logic is the fragment of first-order logic that can express statements of the form


,


where and are regular formulae i.e. formulae built up from atomic formulae, the truth constant, binary meets and existential quantification. Such formulae can be interpreted in a regular category, and the interpretation is a model of a sequent


,


if the interpretation of factors through the interpretation of . This gives for each theory (set of sequences) and for each regular category C a category Mod(T,C) of models of T in C. This construction gives a functor Mod(T,-):RegCatCat from the category RegCat of small regular categories and regular functors to small categories. It is an important result that for each theory T and for each category C, there is a category R(T) and an equivalence


,


which is natural in C. Up to equivalence any small regular category C arises this way as the classifying category, of a regular theory.

Read more about this topic:  Regular Category

Famous quotes containing the words regular, logic and/or categories:

    They were regular in being gay, they learned little things that are things in being gay, they learned many little things that are things in being gay, they were gay every day, they were regular, they were gay, they were gay the same length of time every day, they were gay, they were quite regularly gay.
    Gertrude Stein (1874–1946)

    Somebody who should have been born
    is gone.

    Yes, woman, such logic will lead
    to loss without death. Or say what you meant,
    you coward . . . this baby that I bleed.
    Anne Sexton (1928–1974)

    Kitsch ... is one of the major categories of the modern object. Knick-knacks, rustic odds-and-ends, souvenirs, lampshades, and African masks: the kitsch-object is collectively this whole plethora of “trashy,” sham or faked objects, this whole museum of junk which proliferates everywhere.... Kitsch is the equivalent to the “cliché” in discourse.
    Jean Baudrillard (b. 1929)