Regression Estimation - Power and Sample Size Calculations

Power and Sample Size Calculations

There are no generally agreed methods for relating the number of observations versus the number of independent variables in the model. One rule of thumb suggested by Good and Hardin is, where is the sample size, is the number of independent variables and is the number of observations needed to reach the desired precision if the model had only one independent variable. For example, a researcher is building a linear regression model using a dataset that contains 1000 patients . If he decides that five observations are needed to precisely define a straight line, then the maximum number of independent variables his model can support is 4, because

.

Read more about this topic:  Regression Estimation

Famous quotes containing the words power, sample, size and/or calculations:

    The power of perpetuating our property in our families is one of the most valuable and interesting circumstances belonging to it, and that which tends the most to the perpetuation of society itself.
    Edmund Burke (1729–1797)

    All that a city will ever allow you is an angle on it—an oblique, indirect sample of what it contains, or what passes through it; a point of view.
    Peter Conrad (b. 1948)

    Delusions that shrink to the size of a woman’s glove,
    Then sicken inclusively outwards:
    . . . the incessant recital
    Intoned by reality, larded with technical terms,
    Each one double-yolked with meaning and meaning’s rebuttal:
    For the skirl of that bulletin unpicks the world like a knot....
    Philip Larkin (1922–1986)

    He who is conversant with the supernal powers will not worship these inferior deities of the wind, waves, tide, and sunshine. But we would not disparage the importance of such calculations as we have described. They are truths in physics because they are true in ethics.
    Henry David Thoreau (1817–1862)