Reductive Dechlorination - Biological

Biological

In a biological context chlorine behaves similarly to other atoms in the halogen chemical series, and thus reductive dechlorination can be considered to fall within a somewhat broader class of biological reactions known as reductive dehalogenation reactions, in which the removal of a halogen substituent from an organic molecule occurs with a simultaneous addition of electrons to the molecule. This can be further subdivided into two types of reaction processes, the first of which, hydrogenolysis, is the replacement of the halogen atom with a hydrogen atom. The second, vicinal reduction (sometimes called, dihaloelimination), involves the removal of two halogen atoms that are adjacent on the same alkane or alkene molecule, leading to the formation of an additional carbon-carbon bond.

Biological reductive dechlorination is often catalyzed by certain species of bacteria. Sometimes the bacterial species are highly specialized for organochlorine respiration and even a particular electron donor, as in the case of Dehalococcoides and Dehalobacter. In other examples, such as Anaeromyxobacter, bacteria have been isolated that are capable of using a variety of electron donors and acceptors, with a subset of possible electron acceptors being organochlorines.

In many instances, microbiological reductive dechlorination of chlorinated organic molecules is important for bioremediation of polluted groundwater. One particularly important example for public health is the organochloride respiration of the dry-cleaning solvent, tetrachloroethylene (PCE), and the engine degreasing solvent trichloroethylene (TCE) by naturally occurring anaerobic bacteria, often members of the candidate genera Dehalococcoides. Bioremediation of these chloroethenes can occur when other microorganisms at the contaminated site provide H2 as a natural byproduct of various fermentation reactions. The dechlorinating bacteria use this H2 as their electron donor, ultimately replacing chlorine atoms in the chloroethenes with hydrogen atoms via hydrogenolytic reductive dechlorination. If the soil and groundwater contain enough organic electron donor and the appropriate strains of Dehalococcoides, this process can proceed until all of the chlorine atoms are removed, and TCE is dechlorinated completely via dichloroethene (DCE) and vinyl chloride (VC) to ethene, a harmless end-product.

Read more about this topic:  Reductive Dechlorination

Famous quotes containing the word biological:

    No poetic phantasy
    but a biological reality,
    a fact: I am an entity
    like bird, insect, plant
    or sea-plant cell;
    I live; I am alive.
    Hilda Doolittle (1886–1961)

    No further evidence is needed to show that “mental illness” is not the name of a biological condition whose nature awaits to be elucidated, but is the name of a concept whose purpose is to obscure the obvious.
    Thomas Szasz (b. 1920)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)