Definition
Let X be a separable, reflexive Banach space with norm || || and fix T > 0. Let BV−(X) denote the space of all left-continuous functions z : → X with bounded variation on .
For any function of time f, use subscripts +/− to denote the right/left continuous versions of f, i.e.
For any sub-interval of, let Var(z, ) denote the variation of z over, i.e., the supremum
The first step in the construction of the reduced derivative is the “stretch” time so that z can be linearly interpolated at its jump points. To this end, define
The “stretched time” function τ̂ is left-continuous (i.e. τ̂ = τ̂−); moreover, τ̂− and τ̂+ are strictly increasing and agree except at the (at most countable) jump points of z. Setting T̂ = τ̂(T), this “stretch” can be inverted by
Using this, the stretched version of z is defined by
where θ ∈ and
The effect of this definition is to create a new function ẑ which “stretches out” the jumps of z by linear interpolation. A quick calculation shows that ẑ is not just continuous, but also lies in a Sobolev space:
The derivative of ẑ(τ) with respect to τ is defined almost everywhere with respect to Lebesgue measure. The reduced derivative of z is the pull-back of this derivative by the stretching function τ̂ : → . In other words,
Associated with this pull-back of the derivative is the pull-back of Lebesgue measure on, which defines the differential measure μz:
Read more about this topic: Reduced Derivative
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)