Recurrence Relation - Fibonacci Numbers

Fibonacci Numbers

The Fibonacci numbers are the archetype of a linear, homogeneous recurrence relation with constant coefficients (see below). They are defined using the linear recurrence relation

with seed values:

Explicitly, recurrence yields the equations:

etc.

We obtain the sequence of Fibonacci numbers which begins:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

It can be solved by methods described below yielding the closed-form expression which involve powers of the two roots of the characteristic polynomial t2 = t + 1; the generating function of the sequence is the rational function

Read more about this topic:  Recurrence Relation

Famous quotes containing the word numbers:

    The principle of majority rule is the mildest form in which the force of numbers can be exercised. It is a pacific substitute for civil war in which the opposing armies are counted and the victory is awarded to the larger before any blood is shed. Except in the sacred tests of democracy and in the incantations of the orators, we hardly take the trouble to pretend that the rule of the majority is not at bottom a rule of force.
    Walter Lippmann (1889–1974)