Reciprocal Lattice - Arbitrary Collection of Atoms

Arbitrary Collection of Atoms

One path to the reciprocal lattice of an arbitrary collection of atoms comes from the idea of scattered waves in the Fraunhofer (long-distance or lens back-focal-plane) limit as a Huygens-style sum of amplitudes from all points of scattering (in this case from each individual atom). This sum is denoted by the complex amplitude F in the equation below, because it is also the Fourier transform (as a function of spatial frequency or reciprocal distance) of an effective scattering potential in direct space:

Here g = q/(2π) is the scattering vector q in crystallogapher units, N is the number of atoms, fj is the atomic scattering factor for atom j and scattering vector g, while rj is the vector position of atom j. Note that the Fourier phase depends on one's choice of coordinate origin.

For the special case of an infinite periodic crystal, the scattered amplitude F = M Fhkl from M unit cells (as in the cases above) turns out to be non-zero only for integer values of (hkl), where

when there are j=1,m atoms inside the unit cell whose fractional lattice indices are respectively {uj,vj,wj}. To consider effects due to finite crystal size, of course, a shape convolution for each point or the equation above for a finite lattice must be used instead.

Whether the array of atoms is finite or infinite, one can also imagine an "intensity reciprocal lattice" I, which relates to the amplitude lattice F via the usual relation I = F*F where F* is the complex conjugate of F. Since Fourier transformation is reversible, of course, this act of conversion to intensity tosses out "all except 2nd moment" (i.e. the phase) information. For the case of an arbitrary collection of atoms, the intensity reciprocal lattice is therefore:

Here rjk is the vector separation between atom j and atom k. One can also use this to predict the effect of nano-crystallite shape, and subtle changes in beam orientation, on detected diffraction peaks even if in some directions the cluster is only one atom thick. On the down side, scattering calculations using the reciprocal lattice basically consider an incident plane wave. Thus after a first look at reciprocal lattice (kinematic scattering) effects, beam broadening and multiple scattering (i.e. dynamical) effects may be important to consider as well.

Read more about this topic:  Reciprocal Lattice

Famous quotes containing the words arbitrary, collection and/or atoms:

    We do the same thing to parents that we do to children. We insist that they are some kind of categorical abstraction because they produced a child. They were people before that, and they’re still people in all other areas of their lives. But when it comes to the state of parenthood they are abruptly heir to a whole collection of virtues and feelings that are assigned to them with a fine arbitrary disregard for individuality.
    Leontine Young (20th century)

    Bolkenstein, a Minister, was speaking on the Dutch programme from London, and he said that they ought to make a collection of diaries and letters after the war. Of course, they all made a rush at my diary immediately. Just imagine how interesting it would be if I were to publish a romance of the “Secret Annexe.” The title alone would be enough to make people think it was a detective story.
    Anne Frank (1929–1945)

    [Humanity] has unquestionably one really effective weapon—laughter. Power, money, persuasion, supplication, persecution—these can lift at a colossal humbug—push it a little—weaken it a little, century by century; but only laughter can blow it to rags and atoms at a blast. Against the assault of laughter nothing can stand.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)