Rearrangement Inequality

In mathematics, the rearrangement inequality states that

x_ny_1 + \cdots + x_1y_n
\le x_{\sigma (1)}y_1 + \cdots + x_{\sigma (n)}y_n
\le x_1y_1 + \cdots + x_ny_n

for every choice of real numbers

and every permutation

of x1, . . ., xn. If the numbers are different, meaning that

then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = ni + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.

Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.

Read more about Rearrangement Inequality:  Applications, Proof

Famous quotes containing the word inequality:

    All the aspects of this desert are beautiful, whether you behold it in fair weather or foul, or when the sun is just breaking out after a storm, and shining on its moist surface in the distance, it is so white, and pure, and level, and each slight inequality and track is so distinctly revealed; and when your eyes slide off this, they fall on the ocean.
    Henry David Thoreau (1817–1862)