Reactive Oxygen Species - Superoxide Dismutase

Superoxide Dismutase

Superoxide dismutases (SOD) are a class of enzymes that catalyze the dismutation of superoxide into oxygen and hydrogen peroxide. As such, they are an important antioxidant defense in nearly all cells exposed to oxygen. In mammals and most chordates, three forms of superoxide dismutase are present. SOD1 is located in the cytoplasm, SOD2 in the mitochondria and SOD3 is extracellular. The first is a dimer (consists of two units), while the others are tetramers (four subunits). SOD1 and SOD3 contain copper and zinc, while SOD2 has manganese in its reactive centre. The genes are located on chromosomes 21, 6, and 4, respectively (21q22.1, 6q25.3 and 4p15.3-p15.1).

The SOD-catalysed dismutation of superoxide may be written with the following half-reactions :

  • M(n+1)+ − SOD + O2− → Mn+ − SOD + O2
  • Mn+ − SOD + O2− + 2H+ → M(n+1)+ − SOD + H2O2.

where M = Cu (n=1) ; Mn (n=2) ; Fe (n=2) ; Ni (n=2).

In this reaction the oxidation state of the metal cation oscillates between n and n+1.

Catalase, which is concentrated in peroxisomes located next to mitochondria, reacts with the hydrogen peroxide to catalyze the formation of water and oxygen. Glutathione peroxidase reduces hydrogen peroxide by transferring the energy of the reactive peroxides to a very small sulfur-containing protein called glutathione. The selenium contained in these enzymes acts as the reactive center, carrying reactive electrons from the peroxide to the glutathione. Peroxiredoxins also degrade H2O2, within the mitochondria, cytosol, and nucleus.

  • 2 H2O2 → 2 H2O + O2 (catalase)
  • 2GSH + H2O2 → GS–SG + 2H2O (glutathione peroxidase)

Read more about this topic:  Reactive Oxygen Species