Definition
Devroye defines a random variate generation algorithm (for real numbers) as follows:
- Assume that
- Computers can manipulate real numbers.
- Computers have access to a source of random variates that are uniformly distributed on the closed interval .
- Then a random variate generation algorithm is any program that halts almost surely and exits with a real number X. This X is called a random variate.
(Both assumptions are violated in most real computers. Computers necessarily lack the ability to manipulate real numbers, typically using floating point representations instead. Most computers lack a source of true randomness (like certain hardware random number generators), and instead use pseudorandom number sequences.)
The distinction between random variable and random variate is subtle and is not always made in the literature. It is useful when one wants to distinguish between a random variable itself with an associated probability distribution on the one hand, and random draws from that probability distribution on the other, in particular when those draws are ultimately derived by floating-point arithmetic from a pseudo-random sequence.
Read more about this topic: Random Variate
Famous quotes containing the word definition:
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)