Random Permutation Statistics - Probability That A Random Subset of Lies On The Same Cycle

Probability That A Random Subset of Lies On The Same Cycle

Select a random subset Q of containing m elements and a random permutation, and ask about the probability that all elements of Q lie on the same cycle. This is another average parameter. The function b(k) is equal to, because a cycle of length k contributes subsets of size m, where for k < m. This yields

 \frac{\partial}{\partial u} g(z, u) \Bigg|_{u=1} =
\frac{1}{1-z} \sum_{k\ge m} {k \choose m} \frac{z^k}{k} =
\frac{1}{1-z} \frac{1}{m} \frac{z^m}{(1-z)^m} =
\frac{1}{m} \frac{z^m}{(1-z)^{m+1}}.

Averaging out we obtain that the probability of the elements of Q being on the same cycle is

 {n \choose m}^{-1} \frac{1}{m} \frac{z^m}{(1-z)^{m+1}} =
{n \choose m}^{-1} \frac{1}{m} \frac{1}{(1-z)^{m+1}}

or


\frac{1}{m} {n \choose m}^{-1} {(n-m) \; + \; m \choose m} = \frac{1}{m}.

In particular, the probability that two elements p < q are on the same cycle is 1/2.

Read more about this topic:  Random Permutation Statistics

Famous quotes containing the words probability, random, lies and/or cycle:

    Crushed to earth and rising again is an author’s gymnastic. Once he fails to struggle to his feet and grab his pen, he will contemplate a fact he should never permit himself to face: that in all probability books have been written, are being written, will be written, better than anything he has done, is doing, or will do.
    Fannie Hurst (1889–1968)

    Assemble, first, all casual bits and scraps
    That may shake down into a world perhaps;
    People this world, by chance created so,
    With random persons whom you do not know—
    Robert Graves (1895–1985)

    The majority is never right. Never, I tell you! That’s one of these lies in society that no free and intelligent man can help rebelling against. Who are the people that make up the biggest proportion of the population—the intelligent ones or the fools? I think we can agree it’s the fools, no matter where you go in this world, it’s the fools that form the overwhelming majority.
    Henrik Ibsen (1828–1906)

    The Buddha, the Godhead, resides quite as comfortably in the circuits of a digital computer or the gears of a cycle transmission as he does at the top of a mountain or in the petals of a flower.
    Robert M. Pirsig (b. 1928)