Random Permutation Statistics - Odd Cycle Invariants

Odd Cycle Invariants

The types of permutations presented in the preceding two sections, i.e. permutations containing an even number of even cycles and permutations that are squares, are examples of so-called odd cycle invariants, studied by Sung and Zhang (see external links). The term odd cycle invariant simply means that membership in the respective combinatorial class is independent of the size and number of odd cycles occurring in the permutation. In fact we can prove that all odd cycle invariants obey a simple recurrence, which we will derive. First, here are some more examples of odd cycle invariants.

Read more about this topic:  Random Permutation Statistics

Famous quotes containing the words odd and/or cycle:

    Borrowers of books—those mutilators of collections, spoilers of the symmetry of shelves, and creators of odd volumes.
    Charles Lamb (1775–1834)

    The lifelong process of caregiving, is the ultimate link between caregivers of all ages. You and I are not just in a phase we will outgrow. This is life—birth, death, and everything in between.... The care continuum is the cycle of life turning full circle in each of our lives. And what we learn when we spoon-feed our babies will echo in our ears as we feed our parents. The point is not to be done. The point is to be ready to do again.
    Paula C. Lowe (20th century)