Random Permutation Statistics - Number of Permutations That Are Involutions

Number of Permutations That Are Involutions

An involution is a permutation σ so that σ2 = 1 under permutation composition. It follows that σ may only contain cycles of length one or two, i.e. the EGF g(z) of these permutations is

This gives the explicit formula for the total number of involutions among the permutations σ ∈ Sn:

 I(n) = n! g(z) = n! \sum_{a+2b=n} \frac{1}{a! \; 2^b \; b!}
= n! \sum_{b=0}^{\lfloor n/2 \rfloor} \frac{1}{(n-2b)! \; 2^b \; b!}.

Dividing by n! yields the probability that a random permutation is an involution.

Read more about this topic:  Random Permutation Statistics

Famous quotes containing the words number of, number and/or permutations:

    The rising power of the United States in world affairs ... requires, not a more compliant press, but a relentless barrage of facts and criticism.... Our job in this age, as I see it, is not to serve as cheerleaders for our side in the present world struggle but to help the largest possible number of people to see the realities of the changing and convulsive world in which American policy must operate.
    James Reston (b. 1909)

    One may confidently assert that when thirty thousand men fight a pitched battle against an equal number of troops, there are about twenty thousand on each side with the pox.
    Voltaire [François Marie Arouet] (1694–1778)

    Motherhood in all its guises and permutations is more art than science.
    Melinda M. Marshall (20th century)