Random Permutation Statistics - Number of Permutations That Are Involutions

Number of Permutations That Are Involutions

An involution is a permutation σ so that σ2 = 1 under permutation composition. It follows that σ may only contain cycles of length one or two, i.e. the EGF g(z) of these permutations is

This gives the explicit formula for the total number of involutions among the permutations σ ∈ Sn:

 I(n) = n! g(z) = n! \sum_{a+2b=n} \frac{1}{a! \; 2^b \; b!}
= n! \sum_{b=0}^{\lfloor n/2 \rfloor} \frac{1}{(n-2b)! \; 2^b \; b!}.

Dividing by n! yields the probability that a random permutation is an involution.

Read more about this topic:  Random Permutation Statistics

Famous quotes containing the words number of, number and/or permutations:

    As Jerome expanded, its chances for the title, “the toughest little town in the West,” increased and when it was incorporated in 1899 the citizens were able to support the claim by pointing to the number of thick stone shutters on the fronts of all saloons, gambling halls, and other places of business for protection against gunfire.
    —Administration in the State of Ariz, U.S. public relief program (1935-1943)

    Again, the great number of cultivated men keep each other up to a high standard. The habit of meeting well-read and knowing men teaches the art of omission and selection.
    Ralph Waldo Emerson (1803–1882)

    The new shopping malls make possible the synthesis of all consumer activities, not least of which are shopping, flirting with objects, idle wandering, and all the permutations of these.
    Jean Baudrillard (b. 1929)