Random Permutation Statistics - Derangements Containing An Even and An Odd Number of Cycles

Derangements Containing An Even and An Odd Number of Cycles

We can use the same construction as in the previous section to compute the number of derangements containing an even number of cycles and the number containing an odd number of cycles. To do this we need to mark all cycles and subtract fixed points, giving

 g(z, u) = \exp\left( - u z + u \log \frac{1}{1-z} \right) =
\exp(-uz) \left( \frac{1}{1-z} \right)^u.

Now some very basic reasoning shows that the EGF of is given by

 q(z) = \frac{1}{2} \times g(z, -1) + \frac{1}{2} \times g(z, 1) = \frac{1}{2} \exp(-z) \frac{1}{1-z} +\frac{1}{2} \exp(z) (1-z).

We thus have

D_0(n) = n! q(z) =
\frac{1}{2} n! \sum_{k=0}^n \frac{(-1)^k}{k!}
+ \frac{1}{2} n! \frac{1}{n!} - \frac{1}{2} n! \frac{1}{(n-1)!}

which is

\frac{1}{2} n! \sum_{k=0}^n \frac{(-1)^k}{k!} + \frac{1}{2} (1-n)
\sim \frac{1}{2e} n! + \frac{1}{2} (1-n).

Subtracting from, we find

The difference of these two ( and ) is

Read more about this topic:  Random Permutation Statistics

Famous quotes containing the words odd, number and/or cycles:

    It is odd but agitation or contest of any kind gives a rebound to my spirits and sets me up for a time.
    George Gordon Noel Byron (1788–1824)

    In many ways, life becomes simpler [for young adults]. . . . We are expected to solve only a finite number of problems within a limited range of possible solutions. . . . It’s a mental vacation compared with figuring out who we are, what we believe, what we’re going to do with our talents, how we’re going to solve the social problems of the globe . . .and what the perfect way to raise our children will be.
    Roger Gould (20th century)

    The stars which shone over Babylon and the stable in Bethlehem still shine as brightly over the Empire State Building and your front yard today. They perform their cycles with the same mathematical precision, and they will continue to affect each thing on earth, including man, as long as the earth exists.
    Linda Goodman (b. 1929)