Radio Astronomy - History

History

Before Jansky observed the Milky Way in the 1930s, physicists speculated that radio waves could be observed from astronomical sources. In the 1860s, James Clerk Maxwell's equations had shown that electromagnetic radiation is associated with electricity and magnetism, and could exist at any wavelength. Several attempts were made to detect radio emission from the Sun by experimenters such as Nikola Tesla and Oliver Lodge, but those attempts were unable to detect any emission due to technical limitations of their instruments.

Karl Jansky made the discovery of the first astronomical radio source serendipitously in the early 1930s. As an engineer with Bell Telephone Laboratories, he was investigating static that interfered with short wave transatlantic voice transmissions. Using a large directional antenna, Jansky noticed that his analog pen-and-paper recording system kept recording a repeating signal of unknown origin. Since the signal peaked about every 24 hours, Jansky originally suspected the source of the interference was the Sun crossing the view of his directional antenna. Continued analysis showed that the source was not following the 24 hour daily cycle of the Sun exactly, but instead repeating on a cycle of 23 hours and 56 minutes. Jansky discussed the puzzling phenomena with his friend, astrophysicist and teacher Albert Melvin Skellett, who pointed out that the time between the signal peaks was the exact length of a sidereal day, the timing you would get if the source was an astronomical one, "fixed" in relationship to the stars and passing in front of the antenna once every Earth rotation. By comparing his observations with optical astronomical maps, Jansky eventually concluded that the radiation source peaked when his antenna was aimed at the densest part of the Milky Way in the constellation of Sagittarius. He concluded that since the Sun (and therefore other stars) were not large emitters of radio noise, the strange radio interference may be generated by interstellar gas and dust in the galaxy. (Jansky's peak radio source, one of the brightest in the sky, was designated Sagittarius A in the 1950s and, instead of being galactic "gas and dust", has since be found to be emitted by electrons in a strong magnetic field from the complex of objects found in that area).

Jansky announced his discovery in 1933. He wanted to investigate the radio waves from the Milky Way in further detail, but Bell Labs re-assigned him to another project, so he did no further work in the field of astronomy. However, his pioneering efforts in the field of radio astronomy have been recognized by the naming of the fundamental unit of flux density, the jansky (Jy), after him.

Grote Reber was inspired by Jansky's work, and built a parabolic radio telescope 9m in diameter in his own backyard in 1937. He began by repeating Jansky's observations, and went on to conduct the first sky survey in the radio frequencies. On February 27, 1942, J.S. Hey, a British Army research officer, made the first detection of radio waves emitted by the Sun. By the early 1950s, Martin Ryle and Antony Hewish at Cambridge University had used the Cambridge Interferometer to map the radio sky, producing the famous 2C and 3C surveys of radio sources.

Read more about this topic:  Radio Astronomy

Famous quotes containing the word history:

    Indeed, the Englishman’s history of New England commences only when it ceases to be New France.
    Henry David Thoreau (1817–1862)

    The principle office of history I take to be this: to prevent virtuous actions from being forgotten, and that evil words and deeds should fear an infamous reputation with posterity.
    Tacitus (c. 55–117)

    The best history is but like the art of Rembrandt; it casts a vivid light on certain selected causes, on those which were best and greatest; it leaves all the rest in shadow and unseen.
    Walter Bagehot (1826–1877)