Radar Tracker - Track Smoothing - Kalman Filter

Kalman Filter

The role of the Kalman Filter is to take the current known state (i.e. position, heading, speed and possibly acceleration) of the target and predict the new state of the target at the time of the most recent radar measurement. In making this prediction, it also updates its estimate of its own uncertainty (i.e. errors) in this prediction. It then forms a weighted average of this prediction of state and the latest measurement of state, taking account of the known measurement errors of the radar and its own uncertainty in the target motion models. Finally, it updates its estimate of its uncertainty of the state estimate. A key assumption in the mathematics of the Kalman filter is that measurement equations (i.e. the relationship between the radar measurements and the target state) and the state equations (i.e. the equations for predicting a future state based on the current state) are linear.

The Kalman filter assumes that the measurement errors of the radar, and the errors in its target motion model, and the errors in its state estimate are all zero-mean Gaussian distributed. This means that all of these sources of errors can be represented by a covariance matrix. The mathematics of the Kalman filter is therefore concerned with propagating these covariance matrices and using them to form the weighted sum of prediction and measurement.

In situations where the target motion conforms well to the underlying model, there is a tendency of the Kalman filter to become "overconfident" of its own predictions and to start to ignore the radar measurements. If the target then manoeuvres, the filter will fail to follow the manoeuvre. It is therefore common practice when implementing the filter to arbitrarily increase the magnitude of the state estimate covariance matrix slightly at each update to prevent this.

Read more about this topic:  Radar Tracker, Track Smoothing