Quasar - History of Observation

History of Observation

The first quasars were discovered with radio telescopes in the late 1950s. Many were recorded as radio sources with no corresponding visible object. Using small telescopes and the Lovell Telescope as an interferometer, they were shown to have a very small angular size. Hundreds of these objects were recorded by 1960 and published in the Third Cambridge Catalogue as astronomers scanned the skies for the optical counterparts. In 1960, radio source 3C 48 was finally tied to an optical object. Astronomers detected what appeared to be a faint blue star at the location of the radio source and obtained its spectrum. Containing many unknown broad emission lines, the anomalous spectrum defied interpretation—a claim by John Bolton of a large redshift was not generally accepted.

In 1962 a breakthrough was achieved. Another radio source, 3C 273, was predicted to undergo five occultations by the moon. Measurements taken by Cyril Hazard and John Bolton during one of the occultations using the Parkes Radio Telescope allowed Maarten Schmidt to optically identify the object and obtain an optical spectrum using the 200-inch Hale Telescope on Mount Palomar. This spectrum revealed the same strange emission lines. Schmidt realized that these were actually spectral lines of hydrogen redshifted at the rate of 15.8 percent. This discovery showed that 3C 273 was receding at a rate of 47,000 km/s. This discovery revolutionized quasar observation and allowed other astronomers to find redshifts from the emission lines from other radio sources. As predicted earlier by Bolton, 3C 48 was found to have a redshift of 37% the speed of light.

The term quasar was coined by Chinese-born U.S. astrophysicist Hong-Yee Chiu in 1964, in Physics Today, to describe these puzzling objects:

So far, the clumsily long name 'quasi-stellar radio sources' is used to describe these objects. Because the nature of these objects is entirely unknown, it is hard to prepare a short, appropriate nomenclature for them so that their essential properties are obvious from their name. For convenience, the abbreviated form 'quasar' will be used throughout this paper.

Hong-Yee Chiu in Physics Today, May, 1964

Later it was found that not all (actually only 10% or so) quasars have strong radio emission (are 'radio-loud'). Hence the name 'QSO' (quasi-stellar object) is used (in addition to 'quasar') to refer to these objects, including the 'radio-loud' and the 'radio-quiet' classes.

One great topic of debate during the 1960s was whether quasars were nearby objects or distant objects as implied by their redshift. It was suggested, for example, that the redshift of quasars was not due to the expansion of space but rather to light escaping a deep gravitational well. However a star of sufficient mass to form such a well would be unstable and in excess of the Hayashi limit. Quasars also show 'forbidden' spectral emission lines which were previously only seen in hot gaseous nebulae of low density, which would be too diffuse to both generate the observed power and fit within a deep gravitational well. There were also serious concerns regarding the idea of cosmologically distant quasars. One strong argument against them was that they implied energies that were far in excess of known energy conversion processes, including nuclear fusion. At this time, there were some suggestions that quasars were made of some hitherto unknown form of stable antimatter and that this might account for their brightness. Others speculated that quasars were a white hole end of a wormhole. However, when accretion disc energy-production mechanisms were successfully modeled in the 1970s, the argument that quasars were too luminous became moot and today the cosmological distance of quasars is accepted by almost all researchers.

In 1979 the gravitational lens effect predicted by Einstein's General Theory of Relativity was confirmed observationally for the first time with images of the double quasar 0957+561.

In the 1980s, unified models were developed in which quasars were classified as a particular kind of active galaxy, and a consensus emerged that in many cases it is simply the viewing angle that distinguishes them from other classes, such as blazars and radio galaxies. The huge luminosity of quasars results from the accretion discs of central supermassive black holes, which can convert on the order of 10% of the mass of an object into energy as compared to 0.7% for the p-p chain nuclear fusion process that dominates the energy production in sun-like stars.

This mechanism also explains why quasars were more common in the early universe, as this energy production ends when the supermassive black hole consumes all of the gas and dust near it. This means that it is possible that most galaxies, including our own Milky Way, have gone through an active stage (appearing as a quasar or some other class of active galaxy depending on black hole mass and accretion rate) and are now quiescent because they lack a supply of matter to feed into their central black holes to generate radiation.

Read more about this topic:  Quasar

Famous quotes containing the words history of, history and/or observation:

    Indeed, the Englishman’s history of New England commences only when it ceases to be New France.
    Henry David Thoreau (1817–1862)

    In every election in American history both parties have their clichés. The party that has the clichés that ring true wins.
    Newt Gingrich (b. 1943)

    Men look on knowledge which they learn—or might learn—from others as they do on the most beautiful structures which are not their own: in outward objects, they would rather behold their own hogsty than their neighbor’s palace; and in mental ones, would prefer one grain of knowledge gained by their own observation to all the wisdom of a thousand Solomons.
    Sarah Fielding (1710–1768)