Pyrite - Formal Oxidation States For Pyrite, Marcasite, and Arsenopyrite

Formal Oxidation States For Pyrite, Marcasite, and Arsenopyrite

From the perspective of classical inorganic chemistry, which assigns formal oxidation states to each atom, pyrite is probably best described as Fe2+S22−. This formalism recognizes that the sulfur atoms in pyrite occur in pairs with clear S–S bonds. These persulfide units can be viewed as derived from hydrogen disulfide, H2S2. Thus pyrite would be more descriptively called iron persulfide, not iron disulfide. In contrast, molybdenite, MoS2, features isolated sulfide (S2−) centers because the oxidation state of molybdenum is Mo4+. The mineral arsenopyrite has the formula FeAsS. Whereas pyrite has S2 subunits, arsenopyrite has AsS units, formally derived from deprotonation of H2AsSH. Analysis of classical oxidation states would recommend the description of arsenopyrite as Fe3+(AsS)3−.

Read more about this topic:  Pyrite

Famous quotes containing the words formal and/or states:

    I will not let him stir
    Till I have used the approvèd means I have,
    With wholesome syrups, drugs, and holy prayers,
    To make of him a formal man again.
    William Shakespeare (1564–1616)

    A little group of willful men, representing no opinion but their own, have rendered the great government of the United States helpless and contemptible.
    Woodrow Wilson (1856–1924)