Pullback (differential Geometry) - Pullback of Multilinear Forms

Pullback of Multilinear Forms

Let Φ:VW be a linear map between vector spaces V and W (i.e., Φ is an element of L(V,W), also denoted Hom(V,W)), and let

be a multilinear form on W (also known as a tensor — not to be confused with a tensor field — of rank (0,s), where s is the number of factors of W in the product). Then the pullback Φ*F of F by Φ is a multilinear form on V defined by precomposing F with Φ. More precisely, given vectors v1,v2,...,vs in V, Φ*F is defined by the formula

which is a multilinear form on V. Hence Φ* is a (linear) operator from multilinear forms on W to multilinear forms on V. As a special case, note that if F is a linear form (or (0,1) -tensor) on W, so that F is an element of W*, the dual space of W, then Φ*F is an element of V*, and so pullback by Φ defines a linear map between dual spaces which acts in the opposite direction to the linear map Φ itself:

From a tensorial point of view, it is natural to try to extend the notion of pullback to tensors of arbitrary rank, i.e., to multilinear maps on W taking values in a tensor product of r copies of W. However, elements of such a tensor product do not pull back naturally: instead there is a pushforward operation from to given by

Nevertheless, it follows from this that if Φ is invertible, pullback can be defined using pushforward by the inverse function Φ-1. Combining these two constructions yields a pushforward operation, along an invertible linear map, for tensors of any rank (r,s).

Read more about this topic:  Pullback (differential Geometry)

Famous quotes containing the word forms:

    I am prisoner of a gaudy and unlivable present, where all forms of human society have reached an extreme of their cycle and there is no imagining what new forms they may assume.
    Italo Calvino (1923–1985)