Pullback (differential Geometry) - Pullback of (covariant) Tensor Fields

Pullback of (covariant) Tensor Fields

The construction of the previous section generalizes immediately to tensor bundles of rank (0,s) for any natural number s: a (0,s) tensor field on a manifold N is a section of the tensor bundle on N whose fiber at y in N is the space of multilinear s-forms

By taking Φ equal to the (pointwise) differential of a smooth map φ from M to N, the pullback of multilinear forms can be combined with the pullback of sections to yield a pullback (0,s) tensor field on M. More precisely if S is a (0,s)-tensor field on N, then the pullback of S by φ is the (0,s)-tensor field φ*S on M defined by

for x in M and Xj in TxM.

Read more about this topic:  Pullback (differential Geometry)

Famous quotes containing the word fields:

    Like a man traveling in foggy weather, those at some distance before him on the road he sees wrapped up in the fog, as well as those behind him, and also the people in the fields on each side, but near him all appears clear, though in truth he is as much in the fog as any of them.
    Benjamin Franklin (1706–1790)