Pullback (differential Geometry) - Pullback of Bundles and Sections

Pullback of Bundles and Sections

If E is a vector bundle (or indeed any fiber bundle) over N and φ:MN is a smooth map, then the pullback bundle φ*E is a vector bundle (or fiber bundle) over M whose fiber over x in M is given by (φ*E)x = Eφ(x).

In this situation, precomposition defines a pullback operation on sections of E: if s is a section of E over N, then the pullback section is a section of φ*E over M.

Read more about this topic:  Pullback (differential Geometry)

Famous quotes containing the words bundles and/or sections:

    He bundles every forkful in its place,
    And tags and numbers it for future reference,
    So he can find and easily dislodge it
    In the unloading. Silas does that well.
    He takes it out in bunches like birds’ nests.
    Robert Frost (1874–1963)

    Childhood lasts all through life. It returns to animate broad sections of adult life.... Poets will help us to find this living childhood within us, this permanent, durable immobile world.
    Gaston Bachelard (1884–1962)