Pullback of Bundles and Sections
If E is a vector bundle (or indeed any fiber bundle) over N and φ:M→N is a smooth map, then the pullback bundle φ*E is a vector bundle (or fiber bundle) over M whose fiber over x in M is given by (φ*E)x = Eφ(x).
In this situation, precomposition defines a pullback operation on sections of E: if s is a section of E over N, then the pullback section is a section of φ*E over M.
Read more about this topic: Pullback (differential Geometry)
Famous quotes containing the words bundles and/or sections:
“He bundles every forkful in its place,
And tags and numbers it for future reference,
So he can find and easily dislodge it
In the unloading. Silas does that well.
He takes it out in bunches like birds nests.”
—Robert Frost (18741963)
“I have a new method of poetry. All you got to do is look over your notebooks ... or lay down on a couch, and think of anything that comes into your head, especially the miseries.... Then arrange in lines of two, three or four words each, dont bother about sentences, in sections of two, three or four lines each.”
—Allen Ginsberg (b. 1926)